الموسوعة العربية

ابحث عن أي موضوع يهمك

بحث عن العلاقات في المثلث

بواسطة: نشر في: 1 نوفمبر، 2021
mosoah
بحث عن العلاقات في المثلث

إليكم بحث عن العلاقات في المثلث ، يُعد علم الهندسة هو العلم المعني بدراسة الأشكال الهندسية، تلك الأشكال التي نشاهد عدد كبير منها في حياتنا اليومية، فكل ما يحيط بنا هو عبارة عن شكل هندسي له أبعاده وقوانين حسابه وخصائص ومميزات تميزه عن غيره من الأشكال الأخرى، فتلك الأشكال هي الخطوط والمنحنيات التي تلتقي مع بعضها البعض عند نقطة أو عدة نقاط لإغلاق الشكل، وتتنوع تلك الأشكال ما بين المربع، الدائرة، المستطيل، شبه المنحرف، المعين، متوازي الأضلاع، والمثلث والذي سنقدم بحثًا عن العلاقات فيه من خلال سطور هذا المقال على موسوعة.

بحث عن العلاقات في المثلث

  • بداية يمكن تعريف المثلث بأنه عبارة عن شكل هندسي ذو أبعاد ثنائية، يتكون من ثلاثة أضلاع وله ثلاثة رؤوس وثلاثة زوايا، وإجمالي مجموع زوايا المثلث 180 درجة.
  • ويمكن أن يكون المثلث ذو أضلاع مختلفة من حيث الطول فيُسمى مثلث مختلف الأضلاع، ويمكن أن يكون ذو أضلاع متساوية من حيث الطول وتكون قياسات زواياه متساوية وهي 60 درجة فيُسمى مثلث متساوي الأضلاع، ويمكن أن يكون ذو ضلعين متساويين وتكون الزاويتين المقابلتين للضلعين متساويتين فيُسمى مثلث مساوي الساقين.
  • وفيما يخص العلاقات في المثلث فهي تنقسم إلى ما يلي:
    • المصنفات: وهي قطع مستقيمة أو خطوط تقوم بتقسيم زاوية قمة المثلث إلى زاويتين متساويتين، ويقسم المنصف الضلع المقابل فيصبح ضلعين متساويين وذلك في حال نزول المنصف عليه وإذا كانت زاوية هذا المنصف قائمة، وإذا كانت الزاوية الأصلية التي يقسمها المنصف غير قائمة فإنه يقسم الضلع الذي يقابل الزاوية المنصفة إلى ضلعين طول كل ضلع فيهما مناسب من الجانبين الآخرين من المثلث، أي أن المثلث الأصلي يصبح مثلثين بعد انقسامه، وفي داخل المثلث هناك نقطة تلتقي عندها المصنفات الثلاثة الداخلية الذين يتم رسمهم بالمثلث.
    • الارتفاعات: عندما يسقط من رأس زاوية من زوايا المثلث عمود إلى الضلع الذي يقابل تلك الزاوية؛ فإنه يُطلق عليه الارتفاع، ويمتلك كل مثلث ثلاثة ارتفاعات، وارتفاع كل مثلث هو أقل مسافة بين رأس الزاوية والضلع الذي يقابلها.
    • المتوسطات: يُطلق مصطلح المتوسط على القطعة المستقيمة التي تنزل من أي رأس من المثلث على الضلع الذي يقابلها، فتقسم هذا الضلع إلى قطعتين متساويتين من حيث الطول، ويتحول المثلث الأصلي إلى مثلثين كل مثلث مساوِ للآخر في المساحة.
    • وكل مثلث يشتمل على 3 متوسطات مقُسمة على زواياه الثلاثة، وتصبح جميع المتوسطات متساوية في الطول إذا كان المثلث متساوي الأضلاع، كما يصبح المتوسطين متساويين في الطول إذا كانا مرسومين في زوايا متساوية في مثلث متساوي الساقين.
    • وتختلف المتوسطات في الطول إذا كانت تقع في مثلث قائم الزاوية.
    • ولا يمكن لمتوسط أن يكون خارج المثلث، فجميع المتوسطات موجودة داخل المثلثات.

تصنيف المثلثات

أما عن تصنيف المثلثات وأنواعها فيتم تقسيمها من حيث قياس الزوايا إلى ما يلي:

  • مثلثات حاد الزاوية: وهي مثلثات ذات ثلاث زوايا يقل قياسها عن 90 درجة، أي أن قياس كل زاوية فيه أقل من 90 درجة، ولذلك فهي زوايا حادة.
  • مثلثات قائم الزاوية: وهي مثلثات ذات زاوية يساوي قياسها 90 درجة، أما الزاويتين الآخرتين فمجموع قياسهما يساوي 90 درجة، ويُسمى الضلع المقابل للزاوية القائمة بالوتر.
  • مثلثات منفرج الزاوية: وهي مثلثات يزيد قياس إحدى زاوياه عن 90 درجة، ويزيد هذا القياس أيضًا عن مجموع قياسي الزاويتين الآخرتين.

كما تُصنف المثلثات من حيث أطوال أضلاعها ويتم تقسيمها إلى ما يلي:

  • مثلثات متساوية الأضلاع: وهي المثلثات التي تتميز بتساوي أطوال جميع أضلاعها، وبالتالي تصبح جميع زوايا تلك المثلثات متساوية في القياس، أي أن قياس كل زاوية هو 60 درجة.
  • مثلثات متساوية الساقين: وهي المثلثات ذات الثلاثة أضلاع منهم ضلعان لهما نفس الطول، ويتساوى في تلك المثلثات زاويتي القاعدة، وهما الزاويتين المجاورتين للضلعين المتساويين.
  • مثلثات مختلفة الأضلاع: وهي المثلثات التي تختلف أضلاعها الثلاثة من حيث الطول، وبالتالي تختلف أيضًا قياسات زواياها.

المثلثات المتطابقة والمتشابهة

فيما يخص المثلثات المتطابقة فهي تتميز بما يلي:

  • يتطابق المثلثان عندما يتساويا في الحجم ويتخذان نفس الشكل وتكون زاويهما واحدة.
  • ولتطابق المثلثان يجب تساوي أطوال أضلاع المثلث الأول مع أطوال أضلاع المثلث الثاني.
  • وإذا كان هناك مثلثان قوائم الزاوية فيجب أن يتساوى طول وتر وضلع أحدهما مع طول وتر وضلع المثلث الآخر ليصبحا متطابقين.
  • وليصبح المثلثين متطابقين يجب أن تتساوى زاويتي والضلع المشترك بينهما من المثلث الأول مع زاويتي والضلع المشترك بينهما للمثلث الثاني.
  • يصبح المثلثين متطابقين إذا كان طول ضلعي المثلث الأول مع طول ضلعي المثلث الثاني متساويان، كما يجب تساوي كل زاوية محصورة بين صلعي المثلث مع مثيلتها في المثلث الآخر.

أما المثلثات المتشابهة فهي تتميز بما يلي:

  • يصبح المثلثان متشابهان في حال تناسب أطوال أضلاعه.
  • يتشابه المثلثان إذا كان قياس زاوية أحدهما يساوي قياس الزاوية الموجودة في المثلث الآخر، مع تناسب أطوال الضلعين المحاصرين لتلك الزاوية.
  • يصبح المثلثان متشابهان إذا كان قياس زاويهما الثلاثة متشابه.

خصائص المثلث

أما عن خصائص المثلث فهي كما يلي:

  • كل مثلث يتكون من ثلاثة أضلاع، وهذا سبب تسميته بالمثلث، وليس شرطًا تساوي الأضلاع من حيث الطول.
  • يمكن تساوي ضلعين فقط في المثلث من حيث الطول، ويمكن تساوي أضلاعه الثلاثة.
  • قياس زوايا المثلث يمكن أن تكون حادة أو منفرجة أو قائمة.
  • المثلث من الأشكال الهندسية ثنائية الأبعاد.
  • لكل مثلث ثلاثة رؤوس، وكل رأس هي كل زاوية من زواياه.
  • لحساب محيط المثلث يتم جمع أطوال أضلاعه.
  • هناك قانونًا لحساب مساحة المثلث وهو: 0.5 × القاعدة × الارتفاع.
  • إذا تم جمع طول أي ضلعين في المثلث فسيكون حاصل المجموع أكبر من الضلع الثالث له.
  • إذا تم تجمع قياس أي زاويتين في المثلث فسيكون حاصل المجموع أكبر من الزاوية الثالثة له.
  • كل مثلث له ثلاثة زوايا يساوي مجموعهم 180 درجة.
  • أكبر زاوية في المثلث تقابل أطول أضلاعه.
  • المثلث منفرج الزاوية يحتوي على زاوية منفرجة واحدة، والمثلث قائم الزاوية يحتوي على زاوية قائمة واحدة.
  • إذا كان هناك مثلثين وزواياهما المتقابلة متطابقة وتتناسب أطوال أضلاعهما؛ فيصبح المثلثان متشابهان.
  • يتساوى ساقي المثلث القائم الزاوية إذا كان الضلعين الذين يحصران الزاوية القائمة متساويان في الطول، ولا يمكن تساوي الأضلاع الثلاثة لهذا المثلث لأن الوتر دائمًا ما يكون أطول أضلاعه.
  • للمثلث قائم الزاوية ثلاثة زوايا إحداهما قائمة، والزاويتين الآخرتين حادتين قياس كل منهما 45 درجة، ويتساوى فيه طول الضلعين الآخرين.
  • في المثلث متساوي الساقين تكون قاعدته هي الضلع الثالث والذي يختلف عن الضلعين الآخرين في الطول.
  • المثلث مختلف الأضلاع أضلاعه غير متساوية في الطول، وليس له زوايا متساوية في القياس فيمكن أن تكون حادة أو منفرجة أو قائمة، وليس لهذا المثلث نقطة تماثل أو خط تناظر.

 

وإلى هنا نكون قد وصلنا إلى ختام مقالنا والذي عرضنا من خلاله بحث عن العلاقات في المثلث، كما تناولنا تصنيف المثلثات وخصائصها، تابعوا المزيد من المقالات على الموسوعة العربية الشاملة.

للمزيد يمكن الإطلاع على:

المراجع