الموسوعة العربية

ابحث عن أي موضوع يهمك

شرح نظرية ذات الحدين وأمثلة عليها

بواسطة: نشر في: 8 أغسطس، 2020
mosoah
نظرية ذات الحدين

نظرية ذات الحدين هي أحد النظريات ذات العلاقة الوثيقة بعلم الرياضيات التي تهدف إلى نشر المتاطبقات الهامة والتي قام العالم نيوتن بوضعها من أجل إيجاد نشر لثنائي مرفوع بقوة وهو ما يعرف بصيغة ثنائي نيوتن أو ما يطلق عليها صيغة الثنائي والمكونة من عنصرين لا غير معروفين لدى علماء الرياضيات وهما (X. Y) وعدد طبيعي صحيح وهو حرف N.

وهكذا الأمر حيث إن كلاً من الأعداد (N k) والتي تصبح في بعض الأحيان (C n k) والتي تكون متواجدة أحدها فوق الآخر بالمعاملات الثنائية والمعتمدة على التوافيق التي تكون موجودة بسطور المثلث على الكثير من الأشياء، كما يتم تغيير y ب Y بداخل الصيغة إلى أن يتم الوصول إلى صيغة صحيحة، نعرض بالمقال التالي في موسوعة تعريف نظرية ذات الحدين مع شرح طريقة استخدامها.

نظرية ذات الحدين

  • تعد تلك النظرية من المعادلات الرياضية التي تكون مكونة من حدين مختلفين يرتبطتن فيما بينهما إما بعلامة جمع أو علامة طرح، ولإيضاح الأمر أكثر فإن ذلك يعني أن الطرح والجمع يكون فيما بين (أ، ب) حيث يتم التعبير عنهما برمز ن، و، كما يكون الناتج عن تلك العملية معروف بالمفكوك الجبري للحدود.
  •  وقد يطلق على ذلك النسق من الكتابات الموجودة التمددية بصفة عامة، وهو ما يطلق عليه نظرية ذات الحدين والتي يرمز إليها بالحرف ر، كما يستخدم الحرف ب لكي يتم التعبير من خلاله عن القوة، وعلى ذلك المنوال والنسق يتم الاستمرار، ومن الممكن أن يتم استبداله عن طريق الكتابة بصيغة الحد المشتمل.

حل نظرية ذات الحدين

كتدريب على النظرية نعرض المثال التالي:

  • n=3   ،   (x – y) 3 = x3 – 3x2y + 3xy2 – y3
    n=4   ،  (x + y) 4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

بينما البرهان الخاص بها والذي يمكن حلها من خلاله يتم عن طريق معرفة أن عنصر Y من بين العناصر التي تتضمنها المجموعة ( XY= YX , n) والتي تتكون من الأعداد الصحيحة، وبذلك فإن نظرية ذات الحدين تعتمد على النظرية التحليلية التي تقوم بتوزيع الاحتمالات في كل حد من الحدود، كما تعمل على وصف التوزيع الناتج لكي يتم تكوين تجربة من التجارب.

وذلك لكي يكون معامل الحدود الذي يقوم باستخدام النظرية من بين المعاملات ذات الحدين والتي يمكن التعبير عنها عن طريق مثلث باسكال، كما وقد تم الكشف عن أن تلك النظرية قد تؤدي إلى الوصول إلى نتائج لا نهائية حتى بالحالة التي يكون فيها الأس الموجود على العدد غير صحيح.

امثلة على نظرية ذات الحدين

  • جميع الصيغة التي تكون موجودة بالأعلى هي صيغ تعد مما يتبع نسق محدد مثل (1) كل (ن+1) حد، (2)، كما وقد يعد الحد الأول هو أ، ن، بينما الحد الثاني هو ب، ن (3) وهكذا إلى أن يتناقص أس (أ) بمعدل طبيعي حتى يصل إلى (1) كل حد من الحدود، كما وقد يتزايد أس (ب) بمعدل ثابتذلك المعدل هو 1.

إشارة المضروب بنظرية ذو الحدين

وهو ما قد يشير إلى أنها تمثل مجموعة من الأعداد المؤدية إلى نتيجة محددة بالنهاية، حيث قد يتم استخدام مثل ذلك (1×2×3×4×5=5 ، 1×2= 2)، وهو ما يمكن أن يضاف إليه الكثير من الأعداد الأخرى.

التوافق بنظرية ذات الحدين

  • كما سبق ذكره من طرق يتم اتباعها في التوافق والتي يتم استخدامها لكي تتم كتابة المعادلات الرياضية والتي ، وتعد من بين أهم القوانين المستخدمة بتلك المسألة الرياضية، والتي يعد الهدف منها بنهاية هو وضع نتائج مرضية وذلك وفقاً لما قام العالم نيوتن بوضعه الذي قام باستخدام القاعدة من أجل التوصل إلى نتائج محددة.
  • قد تكون تلك النظرية مرتبطة بالمقادير الجبرية الثنائية بالحدود والتي يتم استخدامها لكي يتم تيسير العمليات الحسابية لكي يتم التوصل إلى المفكوك النهائي (س، أ) أس ن، حيث تعد ن من قبيل الحروف الطبيعية المتمثلة مستوياتها بالدنيا، حيث يكون العدد ن طبيعياً بتلك المستويات.
  • كما وقد يكون بموجب ما قام العالم نيوتن بكتابته أن يكون مفكوك العملية وفقاً لقوة معامل الحرف س والتي تكون في حالة نزول لكي يتم التوافق للناتج من خلال العديد من الطرق يتم اختيارها من قبل الأشياء المفكوكة.

الجدير بالذكر أنه في بعض الحالات يتم إثبات نظرية ذو الحدين عن طريق الاستقراء الرياضي المستخدم على درجة الأس عقب ملاحظة بعضاً من العوامل الموجودة بالحدود عقب عملية النشر، والتي تكون ذات شكل رئيسي لكي يتوافق مع بقية الأرقام، كما وقد يبدأ من الصفر، وذلك وفقاً لما شهدته تلك الأنواع من المسائل، التي تتبع لكي يتم حل المعادلات والوصول إلى النتائج، وذلك بعد أن قام العالم الفيزيائي والرياضي نيوتن بوضع التفاصيل المتعلقة بالمعادلات وكيفية حلها.

المراجع

1