الموسوعة العربية

ابحث عن أي موضوع يهمك

بحث عن الاحداثيات القطبية والاعداد المركبة شامل

بواسطة: نشر في: 19 نوفمبر، 2019
mosoah
بحث عن الاحداثيات القطبية والاعداد المركبة

نقدم إليك عزيزي القارئ بحث عن الاحداثيات القطبية والاعداد المركبة من خلال موسوعة والتي تتصل بمادتي الرياضيات والفيزياء، إذ أن المقصود بالنظام الإحداثي القطبي (Polar coordinate system) الإحداثيات ثنائية الأبعاد التي يمكن من خلالها تحديد موضع نقطة محددة على أحد المستويات.

بينما الأعداد المركبة فهي تلك الأعداد المستخدمة بصورة عامة في حياتنا اليومية في التطبيقات المختلفة مثل الكهرباء، و الديناميكا وغيرها من المواضيع المتعلقة بالفيزياء الأخرى، ويمكن من خلالها الوصول إلى النتائج النهاية بصورة موفقة، نتحدث عنهم تفصيلاً في الفقرات الآتية، فتابعونا.

بحث عن الاحداثيات القطبية والاعداد المركبة

  • النظام الإحداثي: هو عبارة طريقة أو نظام من خلاله يمكن التعرف على عدد ما أو كمية معينة لكل نقطة في البُعد الخاص بالفضاء، و غالباً ما تكون تلك الأعداد حقيقية وقليلاً ما يمكن تصنيفها على أنها أعداد عقدية.
  • الأعداد المركبة: هي الأعداد التي يمكن كتابتها في الصورة الأتية (ع = أ +ب ت) إذ أن (ب) تمثل الأعداد الحقيقية، و (ت) مساوية لجذر (-1)، ويطلق على (أ) الجزء الحقيقي الخاص بالعدد المركب، أما (ب) فهي الجزء المفترض من العدد المركب، ويمكن إيضاح مجموعة الأعداد المركبة (ك) على النحو التالي:

(ك) تساوي { ع: ع تساوي أ+ ب ت حيث أ، ب المنتميتان إلى ح، إذاً ت تساوي جذر ال -1}

انواع انظمة الاحداثيات

نعرض في الفقرة التالية أبرز أنظمة الإحداثيات القطبية:

نظام الإحداثيات الديكارتي

  • يتم الاستعانة بنظام الإحداثيات الديكارتي في مجال الرياضيات حتى يتم تحديد موضع نقطة معينة على أحد المستويات بواسطة رقمين يطلق عليهما الإحداثيين (س)، و (ص).
  • ولكي نتمكن من تعريف الإحداثيات نقوم بإسقاط خطين لهما شكل عمودي يطلق عليهما (محوري السينات و الصادات).
  • تمت تسمية ذلك النظام نسبة إلى الفيلسوف وعالم الرياضيات الفرنسي (ديكارت)، الذي استطاع الدمج بين الجبر و الهندسة الأقليدية مما ساهم في تيسير مجال دراسة الخرائط والدوال، وكذلك الهندسة التحليلية.

نظام الإحداثيات الإهليجي

  • يقصد به ذلك النظام ثنائي الأبعاد و متعامد إحداثياً تكون خطوط الإحداثيات الإهليجية متحدة البؤر و القطع الزائدة.

نظام الإحداثيات الكروي

  • يعني نظام إحداثي ثلاثي الأبعاد يتم من خلاله تعين موضع نقطة بواسطة أعداد ثلاثة متمثلة في (زاوية أرتقاء وارتفاع  لنقطة ما من مستوى ثابت يمر بنقطة الأصل)، و (المسافة الشعاعية التي يتم قياسها من النقطة الثابتة المعروفة بنقطة الأصل)، و (زاوية السمت الواقعة في منتصف الخط الموازي الخاص بالخط الواصل ونقطة الأصل الموجودة على المستوى الثابت).

نظام الإحداثيات الأسطواني

  • (Cylindrical coordinate system) نظام ثلاثي الأبعاد تعرف فيه نقاط الفراغ حتى يتم إسقاطها بإحداثيين قطبيين بصورة متوازية على مجموعة من المستويات الثابتة على مستويات ذات إشارة محددة.
  • يطلق على الإحداثيات الأولى (نق) أي نصف القطر، و الإحداثيات الثانية القطبية (تعرف بالموضع الزاوي و أيضاً زاوية السمت)، بينما يطلق على الإحداثيات الثالثة (الارتفاع).
  • يتم الاستفادة من الإحداثيات الأسطوانية بصورة كبيرة في حالات ارتباط الأجسام، و التناظر الدوراني للظواهر حول محاور التوزيع الحراري الطولية في الأسطوانات المعدنية.

التمثيل البياني للأعداد المركبة

  • في إطار عمل بحث عن الإحداثيات القطبية والأعداد المركبة نذكر أن كل عدد مركب تتم كتابته بطريقة واحدة لا بديل لها وتكون على الشكل التالي (أ+ب ت)، ويتم تعينه عن طريق زوج مرتب من الأعداد الحقيقية.
  • يتم تمثيل (أ،ب) بنقطة على المستوى الديكارتي، أو بالمتجه الرئيسي الذي يبدأ من نقطة الأصل، ثم ينتهي بالنقطة التي تكون إحداثياتها (أ،ب).

تسمى الأعداد المركبة بالمستوى الإحداثي الديكارتي أو مستوى (آرجاند) نسبة إلى عالم الرياضيات الفرنسي (آرجند) ويسمى المحور الرأسي حينها بالمحور التخيلي، أما المحور الأفقي فيقصد به المحور الحقيقي، أما فيما يتعلق بنظام الإحداثيات فقد تم تطويره عام (1637)، حيث أعاد ديكارت صياغته بطريقة عملية مبسطة.