الموسوعة العربية

ابحث عن أي موضوع يهمك

بحث عن الأعداد المركبة

بواسطة: نشر في: 8 أكتوبر، 2018
mosoah

بحث عن الأعداد المركبة يتطلب أن تركز وتفهم، فهي مسألة رياضية فهمها سييسر لك التعامل معها حسابيا، هذه الأعداد تعتمد على الفكرة التخيلية كأساس منها، ترجع أهمية وجود بحث عن الأعداد المركبة إلى الدور التطبيقي لها بالرياضيات الرمزية للواقع، وهي تؤثر على العالم بالتطبيقات المتباينة التي تستعملها في مسائل معينة ومشكلات خاصة بها سنوضح كل ذلك هنا من خلال موقع موسوعة.

تصنيفات الأعداد والأرقام:

متخصصي الرياضيات يتعاملون مع الأرقام بدوام لا يكاد يتوقف، ولذا صنفوا الأرقام للتيسير والفهم الصائب وخاصة خلال التعليم للمبتدئين وصغار الطلاب، فكان التقسيم بوجود أعداد متداخلة إلى المركب والطبيعي أو الحقيقي، والصحيح والنسبي والكسور وغيرها.

وبما أنك قارئ المقال تهتم وكان عنوان كلمتك البحثية بحث عن الأعداد المركبة فأنت تحتاج لفهمها ومعرفة ما هي، وهو أمر يسير، تابع:

  أولا: لماذا يزعم الجميع أن الأعداد المركبة أو التركيبية كما أريد         تسميتها أيضا هي صعبة الوصول للاستيعاب والفهم؟

  • العنصر التخيلي في شرح الأعداد المركبة هو المشكل فيها، مع أن الانتباه لمركز يجعلها مفهومة بيسر، ولذا ففهم ما هو العنصر المتخيل فيها هام لتعامل سليم مع نوعيتها، ويصف بعض المتحدثين بها الصعوبة تلك في أن مسمى الاسم التخيلي هو سبب عدم الاستساغة من بعض الناس، أو موافقتهم على الانتشار لها تعليميا، حيث تعط انطباع سلبي، ويرى أن قبول العدد السلبي أقل من صفر كان أيسر ولا يمنع إذا من قبول العدد التخيلي.
  • العدد التخيلي أو المتخيل يكتب على صورة معادلة رمن معادلات المادة الرياضية الحسابية، أ^2+ب ^2 =0، حيث ب عدد حقيقين والعدد الموصوف بأنه حقيقي هو العدد الذي تخيله صفر، والعدد الذي جزئه حقيقي =صفر هو عدد وهمي تخيلي، ذا لدينا عدد حقيقي (موجب/ صفر/ سالب)، عدد متخيل أو وهمي أو افتراضي، وعدد مركب منهما معا.

مثال:

  • عدد مركب على هيئة معادلة (س^2+ ص^2=0)، نعيد كتابة هذا العدد على هيئة أخرى هي (س^2=-ص^2)، وبالتعويض الرقمي عن ص بقيمة 2، تكتب(س^2=-2^2)، ولتحل المسألة المعادلية هذه ينبغي أن نعلم بأن الناتج سيصبح حقيقيا لأن تربيع السالب يصبح موجب، وعله سيكون هنا حاجة لنوع مختلف من الأعداد التخيلية للإجابة على هذا الإشكال، بما تصلح أن تكونه خصائصه.
  • لذا ابتكر رمز للدلالة على الرقم التخيلي هو رمز i، وهو ما سيساعد على حل المعادلة بدون تناقض ما يعني عدم المخالفة لقوانينها، بل إكساب روح التجديد والمرونة الرياضية، ولذا فمن يتساءل عن الرموز التخيلية وعلاقتها بالواقع كما بحال الرقم الحقيقي سيجد أن الجواب لا توجد للتخيلية واقع، ولكنها مجاز عن مقدار.
  • يمكن أن نتصور ضرورة بحث عن الأعداد المركبة في أنها لا تخالف القواعد السابقة رياضيا، وتجديد يحتسب للعلم، طريقة لحل المشكلات التعقيدية التي يمكن حدوثها وإن مصادفة، وفي بحث عن الأعداد المركبة ستلحظ انها تصف أمور نعيشها كما بحالات الكهربائية والديناميكية، والأمور الفزيائية، وغيره..
  • إذا لا غضاضة عن استعمال ما ليس واقعيا بوصف الواقعي على أن تكون هناك مرونة، بتمثيل له معبر عنه ولكن ليس هو فعليا.

    ثانيا: ما هو التعريف المقول عن الأعداد المركبة؟

كل عدد تخيلي = مجموع عدد حقيقي + عدد حقيقي له جانب تخيلي، فإن كان العددين لهما الصفات التالية مثل العدد الأول يساوي صفر فإن العدد التخيلي في المعادلة يكون تخيليا صرف أو تخيلي تماما، وإن كان العدد الذي له جانب وهمي تخيلي = صفر فإنه يصبح حقيقيا، انظر المعادلة:

أ= س + صi    و  i^2 =-1

أ= العدد المركب التخيلي المفترض، س، ص = العددان الحقيقيان وi =الجانب الوهمي لأحد العددين الحقيقيين بالمعادلة، إن كان تربيعيا فإنه يساوي سالب واحد ويكون لا أثر للعدد المركب التخيلي إن كانت قيمة كل من العددين المكونين له صفر.